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Abstract
By imposing the Pauli’s exclusion principle and other known exact relations at each stage in the
self-consistent iteration scheme due to Singwi, Tosi, Land, and Sjölander (STLS), we propose
an algorithm to obtain accurate results for the static structure factor and other related physical
quantities in electron liquids. Its actual implementation is illustrated in the spin fully polarized
homogeneous electron liquid. We suggest the usefulness of our idea in improving accuracy in
other iteration schemes as well.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A comprehensive understanding of the many-body effect in
the homogeneous electron gas is indispensable not only for
clarifying the physical properties in simple metals but also
for constructing a useful exchange–correlation potential in the
Kohn–Sham density functional theory [1], but it is hampered
by the complication that different series of terms in the
perturbation expansion dominate in three different ranges: for
describing the long-range correlation we have to sum all the
ring terms, culminating in the RPA [2], while for the short
range we must include the electron–electron ladder terms. In
order to respect the Pauli’s exclusion principle, these terms
should be complemented by proper account of the exchange
contribution, which becomes important in the medium range.

A conventional idea to overcome this complication is to
modify the RPA by introducing the concept of a local-field
correction G(q) with an expectation that it will take due care
of short- and medium-range effects, but it is not an easy task to
obtain a good, if not the best, form for G(q).

Four decades ago, Singwi, Tosi, Land, and Sjölander
(STLS) [3] proposed a powerful self-consistent iteration loop
to determine G(q) in conjunction with the static structure
factor S(q), starting with the information on the polarization

function in the RPA �0(q, ω). This STLS scheme provides
reasonably good results for both G(q) and S(q). From the
latter quantity, in particular, we can obtain the correlation
energy εc, which agrees very well with the result given
by quantum Monte Carlo (QMC) simulations [4, 5] in the
whole metallic-density region. Even in recent years, there
are many successful applications of this scheme to various
systems [6–10].

In spite of all these merits, this STLS is not a scheme for
obtaining rigorous results, as signaled by the fact that several
exact relations are violated. For example, the obtained G(q)

does not satisfy the compressibility sum rule. The Pauli’s
exclusion principle is not properly incorporated, as observed by
the result that the parallel-spin pair distribution function g↑↑(r)

(the Fourier transform of the parallel-spin static structure factor
S↑↑(q)) does not vanish in the limit of |r| → 0. Actually,
for small |r|, g↑↑(r) shows a very unphysical behavior of
g↑↑(r) < 0 even for high electron densities.

In the past, there have been many attempts to amend these
insufficient points in the STLS framework. Among others,
Vashishta and Singwi [11] and Utsumi and Ichimaru [12]
tried to modify the expression for G(q) so as to satisfy
the compressibility sum rule as well as the non-negativity
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condition g↑↑(r) � 0. Unfortunately, their results for the
correlation energy became much worse than those in the
original STLS scheme.

In this paper, we propose an amendment to the STLS
scheme from a totally new point of view. Namely, we do not
intend to modify the original expression for G(q) but revise
the self-consistent loop itself by adding new procedures to the
loop in order to impose all the known exact relations. This
new idea of amending self-consistent iterative calculations is
rather general and therefore we hope that it will find useful
applications in other self-consistent iterative schemes.

2. Original STLS loop

In terms of �0(q, ω) and the local-field correction between
spin-σ and spin-σ ′ electrons Gσσ ′(q), the density–density
response function χ+(q, ω) and the spin–density response
function χ−(q, ω) are, respectively, expressed as

χ±(q, ω) = − �0(q, ω)

1 + f±(q)�0(q, ω)
, (1)

where f±(q) are defined as f+(q) = [1 − G+(q)]V (q) and
f−(q) = −G−(q)V (q), with V (q) = 4πe2/q2 the bare
Coulomb interaction and G±(q) ≡ G↑↑(q) ± G↑↓(q) [13].

In the STLS theory [3], G±(q) is connected with the static
structure factor S±(q)(≡ S↑↑(q) ± S↑↓(q)) through

G±(q) = 1

n�t

∑

q′ �=0,−q

q · q′

q ′2 [S±(q + q′) − 1], (2)

where n is the electron density and �t represents the total
volume of the system. This relation was deduced from
consideration of the equation of motion for density operators.
On the other hand, by using equation (1) or the fluctuation-
dissipation theorem, S±(q) is related to G±(q) through

S±(q) = 1

n�tπ

∫ ∞

0
dω

�0(q, iω)

1 + f±(q)�0(q, iω)
. (3)

In this way, G(q) and S(q) are made directly
interconnected in the STLS framework, composing a self-
consistent loop, as schematically represented in figure 1(a),
where G±(q) and S±(q) are, respectively, expressed
symbolically as G = F1[S] and S = F2[G], indicating mutual
functional relations.

3. Extension of the STLS loop

Suppose we know better functionals, F̃1 and F̃2, that provide
better local-field correction G̃(q) and static structure factor
S̃(q), amounting to G̃ = F̃1[S̃] and S̃ = F̃2[G̃]. In reality,
however, we know the concrete functional forms only for F1

and F2. Taking this fact into account, we shall rewrite the
functional relations as

G̃ = F̃1[S̃] = F1[S̃] +
(
F̃1[S̃] − F1[S̃]

)
≡ G + δG, (4)

S̃ = F̃2[G̃] = F2[G̃] +
(
F̃2[G̃] − F2[G̃]

)
≡ S + δS. (5)

Figure 1. (a) Self-consistent loop in the original STLS theory;
(b) self-consistent loop in the present theory.

Then we can regard δG as a functional of G, because we
can derive the following relation: δG = (F̃1 − F1)[S̃] =
(F̃1 − F1)F1

−1[G] ≡ δF1[G]. Similarly, we can write δS as
δS = (F̃2 − F2)[G̃] = (F̃2 − F2)F2

−1[S] ≡ δF2[S] and thus
we end up obtaining an extended version of the self-consistent
loop as S̃ → G → δG → G̃ (= G + δG) → S → δS →
S̃ (= S+δS), which is also shown schematically in figure 1(b).

4. Trial functional form

Since they are basically at our disposal, we shall choose the
actual functional forms for δF1 and δF2 so as to satisfy all
the known exact relations for the local-field correction and the
static structure factor.

To be more specific, let us consider δG(q) first.
The relevant relation to determine this quantity is the
compressibility sum rule, which dictates that the correct local-
field correction G̃(q) should behave in the long-wavelength
limit as [14]

G̃(q) −→
q→0

γ0

(
q

pF

)2

,

with γ0 = 1

4
− πα

24

(
rs

3 d2 εc

d rs
2

− 2rs
2 d εc

drs

)
, (6)

where pF is the Fermi momentum, rs is the conventional
nondimensional density parameter, and α = (4/9π)1/3 ≈
0.521. The result of G(q) obtained by using the operator F1,
however, does not satisfy this relation [3, 11], although it still
behaves quadratically as G(q) → γ G

0 (q/pF)
2 in this limit.

Thus we can impose the compressibility sum rule by setting

δG(q) = δF1[G] = δγ0[G] (q/pF)
2

1 + (q/pF)4
, (7)

with δγ0[G] = γ0 − γ G
0 .

In determining the functional form for δS, it is important
to consider the correct asymptotic behavior of S̃(q) in the
limit of q → ∞. Since it is closely connected with the
cusp condition on the spin-dependent pair distribution function
gσσ ′(r) [15], the behavior is written in terms of gσσ ′(r) as

S̃↑↓(q) −→
q→∞ − 4

3

(αrs

π

) (
pF

q

)4

g↑↓(0) + · · · , (8)
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Figure 2. Left, δG↑↑(q), and right, δS↑↑(q), in the spin fully polarized electron liquid at rs = 1, 2, 4, 10, and 20 as a function of q/pF.

S̃↑↑(q) −→
q→∞ − 4

3

(αrs

π

)(
pF

q

)4

g↑↑(0)

+ 4
(αrs

π

)(
pF

q

)6 d2 g↑↑(r)

d (pFr)2

∣∣∣∣
r=0

+ · · · . (9)

These equations indicate that, while S̃↑↓(q) ∝ q−4 for large
q , S̃↑↑(q) ∝ q−6 because of g↑↑(0) = 0. From its very
nature, however, the operator F2 necessarily provides S↑↑(q)

that behaves as q−4 for large q , violating the Pauli’s exclusion
principle. This violation should be rectified by choosing δS so
as to satisfy

g↑↑(0) = 1 + 2

N

∑

q �=0

[
S̃↑↑(q) − 1

]
= 0. (10)

Another important condition to determine δS comes from
consideration of the correlation energy, which reads

1

N

∑

q �=0

V (q)
[

S̃+(q) − SHF(q)
]

= 2εc + rs
dεc

drs
, (11)

where SHF(q) is the static structure factor in the Hartree–Fock
approximation, given as

SHF(q) = 1

n�tπ

∫ ∞

0
dω �0(q, iω). (12)

If we employ the QMC data on εc(rs) [5] in the right-hand
side of equation (11), the correlation energy obtained through
our S̃+(q) reproduces εc(rs) itself, assuring not only self-
consistency of our scheme but also its accuracy.

Further specification of δS can be done only on the trial
and error basis. At the present time, we have arrived at the
following trial functional form for δS:

δS(q) = δF2[S]
= A

[
SRPA(q) − S(q)

] [{
SHF(q)

}3 − {
SHF(q/qc)

}5
]

+ [
SHF(q) − S(q)

] [
B

{
SHF(q)

}3 + (1 − B)

× {
SHF(q/qc)

}5
]
, (13)

where the parameter qc plays the role of a large-q cutoff and is
taken as 1.1pF, and SRPA(q) is defined as

SRPA(q) = 1

n�tπ

∫ ∞

0
dω

�0(q, iω)

1 + V (q)�0(q, iω)
. (14)

This form of δS(q) cancels the q−4-term in S(q) for large q
to make S̃(q) decay as q−6 or faster, removing the problem of
the STLS scheme for large q . On the other hand, the first term
including the factor SRPA(q)− S(q) stands for the correction to
the result in the RPA at small q , and the second term including
the factor SHF(q) − S(q) takes care of the correction to the
exchange processes. In this way, we have imposed that S̃(q)

should behave in accordance with the known exact behaviors
in both long- and short-wavelength regions. The poorly
known medium-range behavior is reasonably determined by
choosing the coefficients A and B in equation (13) to satisfy
equations (10) and (11).

5. Spin fully polarized electron gas

We have applied the above framework to the spin fully
polarized electron liquid, primarily because this is the system
which is most seriously affected by the violation of the Pauli’s
exclusion principle.

In figure 2, the obtained results of δG↑↑(q) and δS↑↑(q)

are shown as a function of q for several values of rs . With the
increase of rs , the overall features of these quantities do not
change at all but are only amplified. It should be noted that
even at rs = 1 (high-density case) both δG↑↑(q) and δS↑↑(q)

are not small, suggesting that the results in the original STLS
scheme are not very accurate even at this high density and that
the agreement of the STLS data with the QMC ones on εc must
be only fortuitous. It should also be noted that δS↑↑(q) exhibits
an interesting nonmonotonic behavior as a function of q: it has
a minimum around q ∼ pF and a maximum around q ∼ 2pF.
The minimum indicates that the correct S̃↑↑(q) must be closer
to SRPA(q) than S↑↑(q) in the STLS in this long-wavelength
region, while in the region of shorter wavelengths the effect of
SHF(q) or the exchange effect is much enhanced over the result
in the STLS.
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Hartree-Fock Hartree-Fock

Figure 3. Parallel-spin pair distribution function g↑↑(r) in the spin fully polarized electron liquid at rs = 1, 2, 4, 10, and 20. Our result (right)
is compared with that in the original STLS (left).

Hartree-Fock Hartree-Fock

Figure 4. Left: parallel-spin pair distribution function g↑↑(r) in the spin fully polarized electron liquid at rs = 2. Right: parallel-spin static
structure factor S↑↑(q) as a function of q/pF. Our result (red line) is compared with those in the STLS (blue line), the RPA (green line), and
the Hartree–Fock (black line).

In order to show how well the Fermi hole is described,
together with the Pauli’s exclusion principle, namely, g↑↑(0) =
0, we plot the results for g↑↑(r) as a function of r in both
the original STLS scheme and our theory for several values
of rs in figure 3. Here again, the STLS fails to produce a
physically reasonable description of the Fermi hole even at
high electron density (rs = 1), but our theory yields perfectly
reasonable results even at very low density (rs = 20). We
add a comment on the fact that at rs = 20 the STLS happens
to give g↑↑(0) ≈ 0, but this does not mean that the STLS
scheme works better in this low-density region, because the
correlation energy obtained in the STLS deviates very much
from the QMC result in this large-rs region. Of course, our
results for εc always reproduce the QMC data.

Finally, let us make a more detailed comparison of our
theory with others at the typical metallic density or rs = 2. In
figure 4, the results for both g↑↑(r) and S↑↑(q) are shown. As
is well known, the RPA incorporates the Coulomb correlation
effect too much in the short-range region, resulting that g↑↑(r)

becomes much lower than zero in this region. This feature is
corrected to a large extent in the STLS scheme by adopting
the screened interaction [1 − G(q)]V (q) rather than the bare
one in the RPA, but still it is not enough, as seen by the fact

that g↑↑(r) ≈ −0.10 for small r . A further correction is made
in our theory by considering the correct asymptotic behavior
of S̃↑↑(q) for large q to give very reasonable g↑↑(r). For the
long-range part or in the small-q region, on the other hand, it
is seen that our S̃↑↑(q) is almost identical to SRPA(q), which is
needed to obtain the rigorous result for εc, even though S̃↑↑(q)

becomes much larger than that in the STLS for large q . In this
way, we can properly account for the many-body effect in the
electron liquids in all ranges.

6. New general scheme

So far, we have explained our new idea about how to improve
on the STLS self-consistent scheme. As might be easily
anticipated, this idea can be applied to more general self-
consistent iterative loops, for which we shall make a brief
explanation below.

A general self-consistent loop may be symbolically shown
in figure 5; physical quantities, A1, A2, . . ., are determined
simultaneously through a self-consistent iterative loop defined
by using mutual relations among them, A1 = F1[{A j}], A2 =
F2[{A j}], . . ..

4
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Figure 5. Top: general self-consistent loop. Bottom: new general
scheme.

Basically, completion of the iterative loop will provide
exact results for the A j if all the operators F j are rigorous
and feasible algorithms for them are available. In most actual
implementations, however, this is not the case and the resultant
A j are not accurate enough to satisfy some exact relations
as symbolically described by R1[A1] = 0, R2[A2] = 0,
. . ., which are either prescribed by some conservation laws or
required by consideration of the proper asymptotic behavior of
the A j .

In this situation, we shall revise the operators F j into
better ones F̃ j and consider the difference δF j between F̃ j

and F j . This difference will be determined so as to satisfy all
the existing exact relations R j [A j ] = 0 and then this will be
included in the self-consistent loop.

An improvement on the Kohn–Sham scheme in the density
functional theory may be possible through this idea, which
will constitute one of the future works along this line of
investigations.

7. Conclusion

We have proposed a new scheme to improve on the STLS
theory that satisfies all the known exact relations strictly. This

scheme features the inclusion of both δG(q)(= δF1[G]) and
δS(q)(= δF2[S]) in the original self-consistent loop, explicitly
showing the logic to construct the extended loop.

The actual functional forms for these δF1[G] and δF2[S]
are not uniquely determined by just imposing these exact
relations, and therefore they become somewhat arbitrary,
especially in the intermediate region of |q|, where there are
no known exact relations to impose. In the electron liquid,
however, a collection of both extensive and intensive studies
on this system over half a century using various many-
body techniques including quantum Monte Carlo simulations
already suggests to us the correct behavior of S(q) or its
Fourier transform g(r) [16]. The results for S(q) and g(r)
obtained in this paper are in accord with these suggested ones,
indicating that our new scheme properly captures the many-
body effect in the electron liquid in all three important ranges,
corresponding to rings, ladders, and exchanges.

In the computational aspect, it must be noted that our
new scheme requires only the information on the polarization
function in the RPA �0(q, ω) as an input for the iteration
procedure, just as in the original STLS. In this respect, we
retain the feasibility of the original STLS as it is, but our theory
goes far beyond it to provide much better results. Incidentally,
we note here that we have not determined the ‘function’ forms
for δG(q) and δS(q), only suitable for the electron liquid, but
the ‘functional’ forms for δF1[G] and δF2[S], indicating that
our scheme in just the present form can be applied to systems
other than the electron liquid, as long as �0(q, ω) can be
obtained by either an analytical or a numerical method.

We have also implied that our idea can be generalized
to any self-consistent iterative loops: the numerical procedure
of the local-density approximation to the exchange–correlation
potential in the Kohn–Sham density functional theory may be
improved by our scheme proposed here with the inclusion of a
step to rectify the Kohn–Sham potential so as to satisfy correct
asymptotic behaviors.
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